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Abstract. The production of backward pions in lepton-nucleus collisions is analyzed. We show that a large
yield of high momentum backward pions can be explained by the Regge asymptotic of the distribution of
nucleons carrying a large momentum fraction in the nuclear target. The calculated spectra of pions emitted
in the ν +Ne→ µ+ π− +X and ν + 2H → µ+ π− +X reactions are in satisfactory agreement with the
available experimental data.

PACS. 13.60.Le Meson production – 25.30.Fj Inelastic electron scattering to continuum – 25.30.Rw Elec-
troproduction reactions

Semi-inclusive lepton-induced hadron production reac-
tions in which the detected hadron is emitted backward
in the rest frame of the target have long been recog-
nized as a powerful tool to investigate short-range nuclear
dynamics. The studies recently carried out in [1,2], fo-
cused on the emission of backward protons in e-A scat-
tering, have shown that: i) the inclusion of high momen-
tum components in the nucleon momentum distribution,
n(|k|), is needed to account for the available data and ii)
the behavior of n(|k|) at large |k| can be obtained from
the Regge asymptotic of the proton spectra observed in
soft hadron-nucleus collisions, provided the nonpertuba-
tive Q2-dependence of the quark distribution in the nu-
cleus is taken into account [2].

Besides providing information on the structure of
the nuclear wave function at short interparticle distance,
the study of backward pion production in semi-inclusive
lepton-nucleus processes allows to quantitatively investi-
gate the fragmentation of the target nucleus into hadrons.
In this paper we describe a theoretical calculation of the
spectra of backward π− arising from target fragmentation
in neutrino-nucleus interactions, and compare the results
to the experimental data of [3]. We will focus on the the
kinematical region forbidden to scattering off a free sta-
tionary nucleon, corresponding to pions emitted backward
with momenta pπ ≥ 0.45 (GeV/c). At these large mo-
menta the effects of final state interactions of the outgoing
pion, which are known to be strongly enhanced at p2

π < 0.2
(GeV/c)2 due to pion absorption associated with produc-
tion of nucleon resonances, are expected to be negligible
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[4,5], and the neutrino-nucleus process can be described
within impulse approximation.

The semi-inclusive spectrum of hadrons (e.g. pions)
of energy Eh and three-momentum p, detected in coinci-
dence with a lepton of energy E′ emitted in the direction
specified by the solid angle Ω, can be written, within the
framework of the impulse approximation, as

ρ`A→`′hX(q,p) = Eh
dσ

dΩdE′dp

=
∫
d4kS(k)r(k)

×
[
Z

A
ρ`p→`′hX(k, q,p) +

N

A
ρ`n→`′hX(k, q,p)

]
. (1)

In the above equation q is the four-momentum transferred
by the lepton, S(k) is the relativistic-invariant function
describing the nuclear vertex with an outgoing virtual nu-
cleon of four-momentum k, ρ`p→`′hX and ρ`n→`′hX are the
semi-inclusive spectra of hadrons h produced in `p and `n
collisions, respectively, Z is the charge of the nucleus, A its
atomic number and N = A − Z the number of neutrons.
The quantity r(k) is the ratio of the fluxes associated with
`N (N = p, n) and `A collisions.

The spectrum of (1) can be rewritten in terms of the
relativistic-invariant variable

z =
MA

m

(pq)
(PAq)

, (2)

where p ≡ (Eh,p) is the four-momentum of the emitted
hadron, m is the nucleon mass and MA and PA denote
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the target mass and four-momentum, respectively. The
resulting expression is

ρ`A→`′hX(x,Q2; z, pt)

=
∫
z≤y

dy d2kt fA(y,Q2, kt)

×
[
Z

A
ρ`p→`′hX

(
x

y
,Q2;

z

y
, pt −

z

y
kt

)
+
N

A
ρ`n→`′hX

(
x

y
,Q2;

z

y
, pt −

z

y
kt

)]
. (3)

In the above equation, Q2 = −q2, x is the Bjorken scaling
variable, pt = |p|2−p2

z and k2
t = |k|2−k2

z , pz and kz being
the components of p and k along the direction of q. The
distribution function fA(y,Q2, kt) is defined as

fA(y,Q2, kt) =
∫
dk0 dkz S(k) y δ

(
y − MA

m

(kq)
(PAq)

)
. (4)

Note that the above definition includes the dependence
of fA(y,Q2, kt) upon Q2, which was neglected in [1,2]
assuming the validity of the Bjorken limit. Hence, (4)
can be safely used at any value of Q2, including the re-
gion Q2 < 50 (GeV/c)2, where the Q2-dependence of
fA(y,Q2, kt) has been shown to be sizeable [6,7].

When the produced hadron is emitted backward, i.e.
when pt = 0, (3) can rewritten in a simplified form assum-
ing that, since the distribution function fA(y,Q2, kt) de-
creases much faster than ρ`N→`′hX as kt increases, the el-
ementary spectra can be replaced by their values at kt = 0
and moved out of the kt integral. The resulting expression
reads [1]:

ρ`A→`′hX(x,Q2; z)

=
∫
z≤y

dyfA(y,Q2)
[
Z

A
ρ`p→`′hX

(
x

y
,Q2;

z

y

)
+
N

A
ρ`n→`′hX

(
x

y
,Q2;

z

y

)]
, (5)

with

fA(y,Q2) =
∫
d4k S(k) y δ

(
y − MA

m

(kq)
(PAq)

)
. (6)

In principle, the distribution function fA(y,Q2) can be
calculated within nuclear many-body theory, approximat-
ing S(k) with the nonrelativistic spectral function P (k),
yielding the probability of finding a nucleon with momen-
tum k and removal energy (m− k0) in the target nucleus
[4]. However, due to the limited range of momentum and
removal energy covered by nonrelativistic calculations of
P (k) (typically |k| < kmax ∼ .7−.8 GeV/c and (m−k0) <
.6 GeV, see e.g. [8]), this procedure can only be used in the
region y < y0 ∼ 1.7−1.85. An alternative approach to ob-
tain fA(y,Q2) at larger y, based on the calculation of the
overlap of the relativistic-invariant phase-space available
to quarks belonging to strongly correlated nucleons, has
been recently proposed in [1]. Within this approach the

Fig. 1. Planar (a) and cylindrical (b) graphs contributing to
the reaction ν + N → µ + h + X. Diagrams (a) and (b) de-
scribe processes in which the incoming neutrino interacts with
a valence quark or a sea quark (or antiquark), respectively

asymptotic behaviour of fA(y,Q2) at y > y0 and small Q2

can be related to the Regge asymptotic of the constituent
quarks distribution at y → 1 and the nonpertubative Q2-
dependence is taken into account following [9].

The second ingredient entering the calculation of the
spectrum defined by (3), i.e. the elementary semi-inclusive
spectrum ρ`N→`′hX(k, q,p), can be evaluated using the
approach developed in [10,11]. According to [10], the ele-
mentary production process can be described in terms of
planar and cylindrical graphs in the s-channel, as shown
in Fig. 1 for the case of neutrino interactions, in which
the exchanged particle is a W -boson. The planar graph
of fig.1a describes the scattering of the incoming neu-
trino off a valence quark. The corresponding contribu-
tion to the spectrum of fast backward hadrons, that will
be denoted FNP (x,Q2; z), is proportional to the valence
quark distribution multiplied by the fragmentation func-
tion of the spectator diquark into the detected hadron. In
[12] FNP (x,Q2; z) has been evaluated for the case of pro-
ton production in neutrino scattering, whereas the case
of pion production in electron scattering has been dis-
cussed in [1]. The planar graph contribution to the process
ν +N → µ+ π +X reads

FNP (x,Q2; z) = z φ1(x,Q2)

×
[

1
3
Duu→π

(
z

1−x

)
+

2
3
Dud→π

(
z

1−x

)]
,(7)

where

φ1(x,Q2) =
G2mE

π

x

1− x

(
m2
W

m2
W +Q2

)
dv(x,Q2) . (8)
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In the above equation G is the Fermi coupling constant,
E is the energy of the incoming neutrino, x is the Bjorken
variable and dv is the d-quark distribution. The functions
Duu→π andDud→π describe the fragmentation of the spec-
tator diquark, uu or ud, into a positive or negative pion,
whereas mW is the W -boson mass.

It is well known that, in addition to the dependence
upon x and z/(1−x), the quark distributions and fragmen-
tation functions display a Q2 dependence. For small Q2

they exhibit true Regge asymptotic [10,11] at xF → ±1,
xF = 2pz/WX and WX being the Feynman variable
and the invariant mass of the undetected debris, respec-
tively. This Regge asymptotic, discussed in the Appendix,
is mainly determined by the intercepts of the Reggeon
(αR(0)) and the averaged baryon trajectories (α̃B(0)) and
is completely different from the corresponding behaviour
observed in deep inelastic lepton-nucleon scattering, where
Q2 is large [10,11]. According to [10] and [11] the planar
graph of fig.1a corresponds to the one-Reggeon graph in
the t-channel, having the asymptotic behaviour WαR(0)−1

X ,
where αR(0) = 1/2 is the Reggeon intercept. As a con-
sequence, the contribution of this graph is a decreasing
function of WX .

The contribution of the so called cylindrical graph,
associated with scattering off a sea quark and shown in
fig.1b, will be denoted FC(x,Q2; z). It can be written in
the form [1,11,13]

FC(x,Q2; z) = z φ2(Q2) [L1(z, x) + L2(z, x)] , (9)

where

φ2(Q2) =
G2mE

π

(
m2
W

m2
W +Q2

)
, (10)

L1 =
∫ 1−x

z

[
uv(y)Duv→π

(
z

y

)
+ dv(y)Ddv→π

(
z

y

)]
dy

y

(11)

and

L2 =
∫ 1−x

z

{
4
3
fud(y)Dud→π

(
z

y

)
+

1
3

[
fuuDuu→π

(
z

y

)
+ fdd(y)Ddd→π

(
z

y

)]}
dy

y
.

(12)

In the above equations uv is the distribution of the va-
lence u-quark, whereas fuu, fud and fdd are the distri-
butions of uu ,ud and dd diquarks. Duv→π, Ddv→π and
Ddd→π are the fragmentation functions of the valence u
and d quarks and the dd diquark into pions, respectively.
The expressions of the quark and diquark distributions
and fragmentation functions employed in our calculations,
obtained within the approach of [11], are given in the Ap-
pendix. At small Q2 the cylindrical graph of fig.1b corre-
sponds to one-Pomeron exchange in the t-channel, having

the asymptotic behaviour W α̃P (0)−1
X . For the supercriti-

cal Pomeron the value of α̃P (0) is given by the relation

∆ ≡ α̃P (0) − 1 ' 0.08 [10,11]. Comparison between the
WX -dependence of the cylindrical and planar graphs of
fig.1 shows that the contribution of the planar graph can
be neglected at large WX and not too large Q2.

In the kinematical domain relevant to our analysis,
corresponding to large z, FC(x,Q2, z) is dominated by
fragmentation of diquarks and valence quarks into pions,
whereas the contribution of sea quarks fragmentation is
negligible. It should also be noticed that the distributions
of valence quarks and diquarks, qv(y) and fqq(y) entering
(11) and (12) (see Appendix, (14) and (15)), are harder
than the sea quark distributions in the pion production
region y > .5.

The functions φ1(x,Q2) and φ2(x,Q2) describe the
upper vertices of figs. 1a and 1b. In the case of
neutrino-nucleon interaction they are proportional to
the charged electroweak current. In conclusion, the
relativistic-invariant spectrum zd3σ/dxdzdpt of pions pro-
duced in ν + N → µ + π± + X processes can be written
in the form

z
d3σ

dxdzdpt
= FP (x,Q2; z, pt)

(
WX

s0

)αR(0)−1

+FC(x,Q2; z, pt)
(
WX

so

)α̃P (0)−1

, (13)

where s0 = 1. GeV2 is a parameter usually introduced in
Regge theory in order to get the correct dimension of the
matrix elements or cross sections. Equation (13) clearly
shows that the cylindrical graph (Fig. 1b) provides the
main contribution to the spectrum at large WX .

The elementary spectrum ρνN→µπX corresponding to
backward production can be readily obtained from the
above zd3σ/dxdzdpt. Substituting into (5) one can fi-
nally evaluate the semi-inclusive spectrum for the case of
neutrino-nucleus scattering and compare to the available
ν-Ne and ν-2H data, taken at CERN by the WA 59 Col-
laboration [3].

In order to compare to the data, the calculated spec-
trum has to be integrated over x and Q2. Since the main
contribution to the integral comes from the region of small
Q2 and large ν/s (ν denotes the neutrino energy loss,
while s = (q + k)2), implying in turn large WX , we have
included in the calculation only the contribution of the
cylindrical graph of Fig. 1b. In Fig. 2a the calculated
(E/σ)ρν+Ne→µ+π−+X , σ being the total cross section, is
shown as a function of the squared pion momentum p2

π to-
gether with the data of [3]. Note that we only show the re-
gion p2

π > .2 (GeV/c)2, where our model is expected to be
applicable. For comparison we also show (dashed line) the
results of a calculation carried out using the nuclear mat-
ter spectral functions of [8], which vanishes for k > kmax
= 0.8 GeV/c, to evaluate the distribution function of (6).
The large difference between the dashed and solid lines,
particularly at p2

π > .4 (GeV/c)2, indicates that nucleons
carrying momenta larger than ∼ .8 GeV/c provide the
dominant contribution. The comparison between the re-
sults of our approach and the deuteron data is shown by
the solid line of Fig. 2b, while the dashed line corresponds
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Fig. 2. (a): p2
π-dependence of the spectrum of π−-mesons pro-

duced backward in the ν + Ne → µ + π− + X process. The
solid line has been obtained using the approach described in
this paper whereas the dashed curve shows the results of a cal-
culation carried out using the nuclear spectral function P (k)
of [8]. The experimental data are taken from [3]. (b): same as
in (a) but for π− produced in the ν + 2H → µ + π− + X
reaction. The dashed curve shows the results of a calculation
carried out using the deuteron momentum distribution of [14]
with a cutoff kmax = .7 GeV/c

to a calculation carried out using the deuteron momentum
distribution of [14], with a cutoff kmax = .7 GeV/c. The
shapes exhibited by the neon and deuteron spectra look
similar, thus confirming the expectation, based on the re-
sults of realistic many-body calculations, that the shape of
the high momentum tail of the nuclear spectral function
is nearly independent of A.

In this paper we have applied the approach developed
in [1] to construct the distribution function fA(y,Q2) (see
(6)) in the region of very large y (y > 1.7), dominated by
short range nuclear dynamics. The conventional treatment
of nucleon-nucleon correlations, based on the spectral
function obtained within nonrelativistic many-body the-
ory, cannot be employed to obtain fA(y,Q2) in this region,
the nucleon momenta involved being too large (> .7 − .8
GeV/c). Within our approach short range nucleon-nucleon
correlations are described in terms of overlapping distri-
butions of three-quark colorless objects.

The calculated fA(y,Q2) has been used to obtain the
spectra of fast backward pions produced in neutrino-
nucleus reactions. Our description of the elementary
neutrino-nucleon vertex is based on the quark-gluon string
model [10,11], which proved successful in the analysis of
multiple hadron production processes in hadron-nucleon
collisions at high energies, in both the beam and target
fragmentation regions. This model seems to be well suited
for the analysis discussed in this paper, since we are focus-
ing on the emission of fast backward pions resulting from
target fragmentation.

The results of our approach, based on ideas originally
proposed to describe hadron production in hadron-nucleus
collisions [15,16] strongly suggest that the same mecha-
nism is responsible for both hadron- and lepton-induced
emisssion of fast backward hadrons from nuclear targets.

This work has been encouraged and supported by the Russian
Foundation of Fundamental Research. We gratefully acknowl-
edge many helpful discussions with D. Amati.

Appendix A

The distributions of valence quarks (qv(z)) and diquarks
(fqq(z)) (q denotes either the u or d quark), exhibiting true
Regge asymptotic at small Q2, can be written according
to [11]:

qv(z) = Cqz
−αR(0)(1− z)αR(0)−2α̃B(0) , (14)

and

fqq(z) = Cqqz
αR(0)−2α̃B(0)(1− z)−αR(0) . (15)

The coefficients Cq and Cqq are determined by the nor-
malization conditions∫ 1

0

qv(z)dz =
∫ 1

0

fqq(z)dz = 1 . (16)

The fragmentation functions have the form [11]

Duv→π+ =
a0

z
(1− z)αR(0)+λ , (17)

Duv→π−(z) = (1− z)Duv→π+(z) , (18)

Ddv→π+(z) = Duv→π−(z),
Ddv→π−(z) = Duv→π+(z) , (19)

Duu→π+ =
a0

z
(1− z)αR(0)−2α̃B(0)+λ , (20)

Duu→π−(z) = (1− z)Duu→π+(z) , (21)

Dud→π+(z) = Dud→π−(z)

=
a0

z
[1 + (1− z)2](1− z)αR(0)−2α̃B(0)+λ, (22)

Ddd→π−(z) = Duu→π+(z),
Ddd→π+(z) = Duu→π−(z). (23)

In the above equations αR(0) = 0.5 is the intercept of
the Reggeon trajectory, α̃B(0) = −0.5 is the intercept
of the average baryonic trajectory, a0 = 0.65 and λ =
2α′R(0) < p2

t >' 0.5, α′R(0) and < p2
t > being the slope

of the Reggeon trajectory and the average value of the
transverse hadron momentum squared.
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